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Abstract. A multifluid extension of the operator-split second-order Eulerian Godunov method is con
structed; in addition to avoiding a Lagrange plus remap formulation, the resulting method is shown to 
satisfy the property that pressure equilibrium among the fluid components is maintained to leading order 
in the absence of strong shocks. A relaxation scheme which restores pressure equilibrium is introduced to 
handle such interactions. The multifIuid algorithm is in the class of volume-of-ft.uid methods; the SLIC 
representation for subgrid structure is used here. Another important result derived here is that the multi
fluid system of PDE's is hyperbolic and has a natural physical interpretation. Computa.tional results are 
presented which show that the new algorithm retains the high resolution, accuracy and stability properties 
of the basic single fluid method. Finally, the single fluid method has been modified with the result that it 
is more efficient as well as more robust with respect to wide variations in the equation-of-state. 

1. Introduction. We present a volume-of-fluid type method for the numerical cal
culation of compressible flow problems in which the fluid is made up of a number of 
thermodynamically distinct materials separated by sharp interfaces. In this approach, a 
standard finite difference representation of the solution is augmented by cell-centered val
ues for the thermodynamic quantities: po., eO., ~ V~ 1 are the density, internal energy, and 
partial volume occupied by the ath fluid in each zone, a = 1, ... , n f. The evolution 
of this representation can be thought of as consisting of two parts. One is the effective 
Lagrangian dynamics-the accelerations, compressions, and work done on the multifluid 
representation-which is computed under the assumption that the various fluid compo
nents are in pressure equilibrium with one another in each cell, and that each cell has 
a single velocity. From a physical point of view, the assumption of pressure equilibrium 
is not unreasonable, since the pressure is continuous across a contact discontinuity. The 
requirement that the cell has a single velocity is not an appropriate one in more than one 
dimension, since slip can be generated at a fluid interface. Thus, jumps in the thermody
namic variables across the interface are tracked, while the jump in tangential velocity is 
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captured using the under lying conservative finite difference method. The other part of the 
evolution is the motion of the fluid interface through the finite difference grid. This is done 
by reconstructing locally the interface geometry from the fractional volumes, and trans
porting material along streamlines defined by the single fluid velocities. Multifluid methods 
have been in use for some time [8,15,17,26] and have been quite effective in representing 
complicated multifluid configurations undergoing large distortions. 

We introduce two innovations into this class of algorithms. The first one concerns the 
effective Lagrangian dynamics of the multifluid cells. A formulation of this dynamics is 
derived which is thermodynamically consistent in the following sense: if the various fluid 
components in a cell are in pressure equilibrium, then they remain so to leading order 
in the truncation error, assuming that the pressure gradients and compressions are finite. 
Since that assumption will occasionally be violated - for example, when a shock crosses a 
material interface a relaxation scheme to restore pressure equilibrium in multifiuid cells is 
also introduced. The second innovation is the coupling of this method to an operator-split 
second-order Eulerian Godunov method. In previous multifluid algorithms, the conceptual 
division into two parts was used literally as the basis for the design of the algorithm, 
with the underlying single-fluid algorithm having to be formulated as a Lagrangian step 
followed by a remap. In the approach taken here, the underlying difference algorithm is a 
conservative Eulerian predictor-corrector method which provides pressures and velocities 
at the cell edges as part of the flux calculation. 

The basic ideas introduced here are presented in Section 2 in the context of constructing 
a multifiuid Lagrangian method; in particular, our approach to partial volume updates~ 
specific total energy redistribution over the fluid components and the pressure equilibrium 
algorithm during a time step can be easily understood in Lagrangian coordinates. The 
corresponding Eulerian algorithm is presented in Section 3. Our derivation begins at the 
PDE level in the sense that an effective multimaterial Eulerian dynamics is derived from 
physical principles along with the assumptions underlying the applicability of a volume
of-fluid approach. The resulting equations are formally derived in Appendix A wherein 
they are also shown to be hyperbolic in a natural way. Appendices Band C contain the 
new version of the underlying single fluid second-order Eulerian Godunov scheme and the 
SLIC fluid interface reconstruction algorithm used in our computations, respectively. The 
results of our calculations are presented in Section 4 and we summarize our conclusions in 
Section 5. 

2. Lagrangian Dynamics and Thermodynamic Consistency. 

A ID Lagrangian multifluid algorithm (or a Lagrangian step of a ID Lagrange + remap 
formulation of a multifluid Eulerian calculation) is developed in this section. In Lagrangian 
coordinates, the primary dependent variables for a single fluid problem are (T, u, E)t, the 
specific volume, velocity and specific total energy of the gas. The independent variables 
are the time t, and a Lagrangian mass coordinate m. Additionally, it is assumed that 
the physical space coordinate system has a generalized volume coordinate arising from, 
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e.g., cylindrical or spherical geometry. Thus, a spatial coordinate x and functions Vex), 
A(x) = dV /dx > 0 of the spatial coordinate specify the geometry. The location in space of 

a particle with mass coordinate m is given by x(m, t), ! (x(m, t)) = u(m, t). Given x(m,t), 

the functions V(m), A(m) = V(x(m, t», A(x(m, t» can be obtained. 

In terms of these variables, the equations of gas dynamics are: 

aT _ aAu = 0 
at am 

(2.1) au ap 0 
at + am 
aE aAup = o. 
at am 

Here, p is the thermodynamic pressure of the gas, p = pep, e), p r- 1 is the density and 
e = E - ~U2 is the specific internal energy of the gas. The speed of sound of the gas is a 
function of the thermodynamic quantities and is given by c2 = PPe/ p2 + pp. It is standard 
to use the form c2 = fp/ p, r = rep, e). Finally, the volume coordinate can be expressed 
directly in terms of the other dependent variables: 

V(x(m, t)) (m T(m', t) dm' , 
lmo 

where mo is some constant independent oft. Physically, V(x(m, t)) is the volume occupied 
by the fluid contained between the mass coordinates m and mo. 

An underlying single-fluid Lagrangian algorithm of a predictor-corrector type is as
sumed given, i.e., a scheme which, given Tn, Un, En, the solution at the old time, produces 

Uj+l/2, Pj+l/2 at the edges of cells to update the conserved quantities: 

T~+l = T~ _ ilt [Au]. 
J J ilmj J 

(2.2) +1 - ilt 
uj uj + Aj am- (P]j 

J 

E n+1 _ n ilt [A ] 
j - E j + ilm _ up j , 

J 

where we denote by [q]j = qj-l/2 - qj+l/2, the jump in edge-centered values across a 

cell, qj = ~(qj+l/2 qj-l/2) and Uj+l/2, Pj+l/2 are obtained from some finite difference 
procedure. In the remainder of the paper, we will suppress the spatial subscript j In 
expressions such as (2.2) if there is no chance of confusion. 

The primary dependent variables for a multifluid Lagrangian algorithm are 
(pa,n, ea,n, il Vlk)n; a = 1, ... ,n f) where il va,n denotes the volume occupied by fluid a. 
Our algorithm consists of several steps. First, effective single fluid values for the conserved 
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quantities Tn, En, and the derived cell-centered quantities pn and the sound speed en, 
are constructed in each of the multifiuid cells. Second, a single fluid algorithm is used to 
obtain Uj+l/2, Pj+l/2. It is assumed in this step that the effective cell-centered quantities 
in the previous step are sufficient for calculating the single fluid fluxes. Two examples 
of schemes for which this is true are certain forms of the two-step Richtmyer version of 
Lax:-Wendroff, and the Godunov methods discussed in [27]. The final step of the algorithm 
distributes the flux differences over the various fluid components in each cell. This is done 
in such a way that the total mass, momentum, and energy of the system are conserved, 
and single-valuedness of the velocity and pressure equilibrium among the fluid components 
in each cell is maintained. 

In the first step, it is assumed that pn is given by pn = p( {pa,n, ~ va,n, ... }; a = 
1, . . . ,n f ) , where the values for the variables pa, n, r a , n and the other thermodynamic 
variables for each fluid are obtained from the dependent variables (po,n, eo,n , ~ va,n; a = 
1, ... ,n f) and the equations-of-state for the n f fluids. It is required that the function p 
be a smooth function of its arguments; that p be independent of the variables associated 
with the ath fluid if ~ va,n = 0; and that, if pa,n = Po independent of a, then p = Po. 

One example of such a function is p = (La pet ,n ~ vo,n) / La ~ vo,n, which has been used 
extensively in multifluid calculations; an alternative formulation is suggested below. The 
single fluid specific volume, specific total energy, and total mass of the cell are given by 
appropriate mass-weighted averages: 

a 

(2.3) 
~v= L~va,n, 

~v 1 
T------ ~m - p' 

E = L~va,npa,nEa,n / ~m. 
a 

In calculating the effective sound speed in a multifluid zone, a relationship of the form 

(2.4) r 8V _ 8p 
- ~V-p 

is sought, where ~ V is the total volume of the zone, and 8V and 8p are arbitrary small 
increments in the total volume and pressure along the effective isentrope. If the fluids are 
in pressure equilibrium, then pa = p for all a, and 

(2.5) 
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the last equality coming from the requirement that thermodynamic changes in the fluids 
should keep the fluid in pressure equilibrium if they are initially so, so that 6p in (2.5) is 
independent of a. Comparing (2.4) and (2.5), we obtain 

(2.6) r LlV 

This r is used to calculate the effective Lagrangian sound speed C2 = rp/r. Obtaining 
the speed of sound in this fashion insures that, at least to leading order in the wave 
strengths, compressions calculated with the single fluid algorithm are compatible with the 
assumption that the fluid remains in pressure equilibrium. 

Having computed the pressures and velocities at the cell edges with some single fluid 
Lagrangian algorithm, the specific volumes (equivalently, volumes), total energies of each 
fluid component and the velocity must be updated. A difference equation for the volume 
update is obtained from 

(2.7) 
LlVn +1 = LlVn + 6V, 

6V = Llt[Au] . 

The volume of each fluid component is updated by assigning it part of t5v: 

(2.8) Ll V ll ,n+l = Ll VaIn + 1Ja6V , L 'fill 1. 
II 

By requiring that the changes in the volumes of each of the fluids all correspond to 
the same pressure change, it must be the case that (Ll v a ,n+l - Ll va,n) r a / Ll va,n is 
independent of a. The choice of '1] a which uniquely satisfies both the latter requirement 
and (2.8) is 

(2.9) 

It is clear that the total volume is conserved, since :La '1] a = L In addition, when r a 

is a constant independent of a, then 'fIa Ll va / Ll V so that the relative compression of 
each fluid component is the same. This corresponds to the original geometric construction 
in [17] of letting the subgrid configuration of the fluids expand or contract uniformly, 
linearly interpolating in volume coordinate the location at any point between the two 
edges. A major objection to that construction is that fluid components having widely 
different compressibilities experienced equal relative compressions. The present procedure 
alleviates that difficulty; for example, if there is one fluid component which is nearly 
incompressible, then r a :» r for that fluid, and the other fluid components absorb most 
of the volume changes. 
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The velocity equation is quite straightforward, since we only require a single velocity 
for the cell. It is given by 

(2.10) +1 -ilt 
Un = Un + A- [P] . 

ilm 

However, it is useful to notice that this corresponds to a redistribution of the momentum 
flux difference over n / momentum equations, one for each fluid, such that the velocity at 
the new time is independent of Q if the velocity at the old time is: 

(2.11) 

In updating the specific total energies, the energy flux difference is split into two 
parts: ~ Au [P], corresponding to the change in the kinetic energy given by the momentum 
change in (2.11); and! p [Au], corresponding to the work done on the fluid due to the 
compression or expansion computed from (2.8)-(2.9). Each of these flux differences is 
distributed over the total energies for each fluid in a manner consistent with the equations 
(2.8-9) and (2.10): 

(2.12) 

It follows easily that the quantity E = I:o ilmo EO / ilm satisfies the conservation law 
(2.2). 

It is clear from the above discussion that, to first order in the local variation of the 
velocity and pressure, the above algorithm preserves pressure equilibrium between the 
multifluid components, and that changes in the thermodynamic state of those components 
are adiabatic if they are in pressure equilibrium. However, it is possible for the various 
fluid components to develop different pressures due to accumulation of truncation errors, 
particularly if a large amplitude wave passes through a multifluid cell. For that reason, we 
provide a mechanism for restoring pressure equilibrium to the components. In doing so, 
we find a distinguished choice for the function p used to calculate the effective pressure in 
the cell. 

At the end of the time step, we compute values for the pressure and sound speed for 
each fluid using the equation of state, obtaining pO, ro. We then calculate volume changes 

(2.13) 

(2.14) 
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which will tend to drive the value of the pressure of the various components of the fluid to 
p. The requirement that the total volume of the fluid remain unchanged in this process, 
Le., that La 8va == 0 implies that 

(2.15) 

This is the formula that will be used to compute the average pressure, both here and 
at the beginning of the time step. In addition, we will also require the energies to change 
corresponding to the volume changes in (2.14). These are given by 

(2.16) 

(2.17) 

Since I:a 8EQ = 0, the total energy is also conserved. 

3. Eulerian Dynamics. 

A system of partial differential equations for which the above procedure constitutes 
a consistent discretization is developed here. First, an evolution equation for the volume 
fractions, fa == ~Va /av, can be derived from (2.7)-(2.9). To do so, notice that 

(3.1) 

where the fact that p~ V is an invariant mass increment is used. Making the substitutions 

8 -+ ~t tt' ~ -+ 8~' the Lagrangian equation 

(3.2) 

is obtained. 

Similarly, differential equations for the densities pa and total energies Ea == eO. + u2/2 
can be derived, 

(3.3) 

The momentum equation remains unchanged: 

(3.4) 
8u 8p 
at +Aam =0. 
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In the above equations, p == t L(fa /ra)pa(pa, ea), t == (L fa /ra)-l. 

These equations extend in a natural way to Eulerian coordinates and multiple dimen
sions, yielding the following system: 

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 
8pu at + \7 • (uup) + \7 p == 0 . 

These equations can also be derived from a completely formal standpoint, using only the 
assumptions of conservation of mass, the first law of thermodynamics and the assumption 
that the fluids are in pressure equilibrium, see Appendix A. 

It is easy to show that, if the sum of the fa's equals 1 initially, then they sum to 1 at 
all later times. Indeed, if S == La fa, then it follows from (3.5a) that S satisfies 

(3.6) 
as 
8t 

u • \7 S == (I - S) \7 • u 

from which the desired result follows. 

By summing the equations for pa, Ea over a, we obtain the usual conservation of mass 
and energy equations 

(3.7) 

ap 
- + \7 • (pu) == 0 at 

8pE at + \7. (puE + up) == o. 

Finally, it is easy to show that pressure equilibrium is preserved if it holds initially, i.e., 
DpQ / Dt is independent of 0: if the solution is smooth. 

The Eulerian equations (3.5) are used as the basis for deriving our single step Eulerian 
scheme for multifluid problems. Restricting our attention to one space dimension, the 
system (3.5) becomes 
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(3.8a) 

(3.8b) 

(3.8c) 

(3.8d) 

apu 
at 

a 2 ap 
av(Apu ) + ax == 0 

The remainder of this section is devoted to the development of a discretization for 
the PDE's (3.8). In the approach taken here, the geometrical construction of subgrid 
fluid configurations will be confined to the transport of the volume fractions fa, with the 
remaining equations differenced using a conservative predictor-corrector formalism. This 
is in contrast to the technique used in the Lagrange + remap approach, in which the 
Lagrangian dynamics are computed in a separate Lagrangian calculation, the results of 
which are averaged conservatively onto the Eulerian mesh. Because the system (3.8) is one
dimensional, the discretization of the advective terms can be performed so that there are 
no stability problems associated with dividing by f o ,n+l in computing the updates of the 
conserved quantitites. In particular, the mass, momentum, and energy in a cell associated 
with a particular material are exhausted whenever the volume fraction associated with that 
material is exhausted. Nevertheless, a redistribution algorithm is needed for the volume 
fractions and nonadvective parts of the momentum and energy flux differences associated 
with each material; this is handled in a fashion suggested by equations (2.8), (2.12). 

The primary dependent variables for the discrete solution are given by uj, fj,n, Pj,n, 
Ej,n, the velocity of the fluid in the cell, and the volume fraction, density, and specific 
total energy for each fluid in the cell, where the latter two variables are defined only for 
those j, a with fjo,n > O. Given these quantities, the various derived quantities such as 
internal energy, pressure, and sound speed r for each fluid are given as in the Lagrangian 
case. 

The overall time-stepping strategy is analogous to that used in the Lagrangian case. 
A single fluid algorithm for (3.5d), (3.7) is used to calculate the effective compressible 
dynamics of the multicomponent fluid, and then each fluid component is evolved separately 
in a thermodynamically consistent fashion. The underlying single fluid algorithm is the 
second-order Godunov method (61, as described in [4] for a general equation-of-state. This 
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algorithm requires as input Pj, uj, Ej, values for the conserved quantities, as well as values 
for the derived quantitites Pj, "Y'J, rj. These are given as follows: 

(3.9) 

There are two sets of information required from the single fluid algorithm. First, the 
multimaterial algorithm must reduce to it for the single fluid case in the sense that it 
provides the fluxes for cells which both are single fluid cells and have only single fluid 
cells on either side of them; in particular, we require the time-centered quantities q = p, 

u, p, e at cell edges. Second, these quantities may also be needed for cell edges adjacent 
to a multifluid cell, see equations (3.14), (3.15) below; and the time-centered values of 
qj+l/2, q = p, u are always needed to update multifluid quantities. A single fluid algorithm 
satisfying these properties is presented in Appendix B and was used to obtain our numerical 
results. 

The discretization of (3.Sa), Le., the finite difference approximation of the evolution 
of the volume fractions fet on the Eulerian grid, is a key step in transferring the ideas of 
Section 2 to the Eulerian context. First, an algorithm is presented which is sufficient for 
virtually any problem for which all the fluids are gases. Afterwards, a correction for the 
general case is constructed. 

The calculation for the basic algorithm proceeds in two steps. First, the left hand side 
of (3.8a) is approximated by a conservative difference, which is given by 

(3.10) 

where Ll Vj~~l;~ is the (signed) volume of fluid a which will cross the cell interface at 
x = Xj+l/2 during the time step, assuming that the right hand side of (3.Sa) is zero and 
the subgrid configuration of the fluid volumes is given by the SLIC construction in [11]; 
Appendix C outlines our implementation in the present context of computing provisional 

volume fraction updates. For example, contained between Xj+l/2 and Xj+l/2 - Uj+l/2 ~t, 
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where the subgrid configuration of the fluid volumes is given by the SLIC construction 
in [11], see Appendix C for an outline of our implementation. If we define Vjt~i/2 == 
V(Xj+l/2) V(Xj+l/2 - Uj+l/2~t), then Vjt~i/2 '" (AU)j+l/2~t, and ~ vo,slic 

rv 17+1/2 . 
Vjt~i/2' so that (3.10) constitutes a formally consistent discretization of the left hand side 
of (3.8a). 

The second step is to calculate the effect of the right hand side of (3.8a) on fa to 
obtain jCl,n+ 1. It follows from (3.10) and the ensuing discussion that 

(3.11) 

approximates 8(Au)j8V. Therefore, ja,n+l is set to be 

(3.12) 

where 

(3.13a) 

and 

(3.13b) 

'" fo,n ra,n 

r- a _ .L.-s=O,± 1 j+8 ;+8 
j - o,n 

Es=o,±l I j +8 

This discretization has the property that 1 2:: ja,n+l 2:: 0 and Eo jo,n+l == 1. In particular, 
if all the to's are equal, the second step in the procedure corresponds to normalizing each 
of the ja,s by Eo: jo. 

The algorithm given by (3.10)-(3.13) can fail in practice. Indeed, let n f == 2 and 
suppose that p} » PJ where the jth zone is the interface between two fluids. If ~ l-j~SiiC > 
If and Uj+! > 0 then it follows that the light fluid leaves the jth zone entirely. If also the 
Riemann problem at the (j-l)-interface does not lead to enough (or any) of the heavy fluid 
entering the jth zone, then the resultant heavy fluid is forced to expand to fill the zone 
in accord with (3.11)-(3.13). For a stiff EOS, this can easily force the fluid into regions 
for which the EOS is invalid and the calculation either collapses or is meaningless. The 
situation described occurs, for example, if air moves away from an air/water interface due 
to a rarefaction wave. 

It is easy to see that this failure of the algorithm is an artifact of computing in Eulerian 
coordinates and not taking into appropriate account the effective Lagrangian dynamics 
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(see the discussion following (2.9)) in computing interface volume fluxes. A resolution 
is obtained by performing the calculation of ~ Yj~~iC in Lagrangian coordinates instead 

when necessary along with a treatment of the relative expansions at the interface which is 
exactly analogous to (3.11)-(3.13); note that the extra steps described here can be entirely 
eliminated for many applications, e.g., for problems involving only gases. 

Therefore, the following computations are performed prior to steps (3.10)-{3.13). First, 
define 

(3.14) ~ vLag == ~ V + ~t[Au] . 

If ~ VLag ::; ~ V, then the zone is compressing and there are no numerical difficulties 
in practice. Otherwise, ~ VLag > ~ V and the zone is expanding. Then, each fluid is 
expanded into the larger volume A V Lag , i.e., 

(3.15) I-Ot JOt n ~V 
, ~VLag' 

Next, the quantities fo. from (3.15) are used to compute Du, t a , t by direct analogy to 
(3.11), (3.13a) and (3.13b), respectively. The update 

(3.16) jo +- jo (1+ to ~t (DU)) 

is made in analogy to (3.12) and the partial volumes 

(3.17) 

are computed. The quantities ~ vLag and ~ va are then used in place of ~ V and ~ VOt in 
the SLIC computation described in Appendix C. The resulting 'Lagrangian' volume fluxes 
must then be recalibrated for the Eulerian scheme as folows: 

(3.18) 

The update of the remaining conserved quantities uses a standard conservative dif
ferencing of (3.8b )-(3.8d) which reduces to the single fluid differencing away from fluid 
interfaces. Define qjtl/2' q = pOt, ea

, u to be q'J if the streamline from the cell center 
defined by Uj+l/2 traces back into a cell containing more than one material; otherwise, it 
is the value obtained from the single fluid calculation. Also, define the auxiliary quantities 

(3.19) 
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The update of the conserved quantities is then given by the following difference equations: 

(3.20) 

Once the conserved quantitites have been updated, it is still necessary to perform the 
relaxation scheme (2.13)-(2.17) to maintain pressure equilibrium in the multifluid cells. 
This is implemented for our Eulerian system by calling the EOS for each fluid using the 
updated multifluid values as input, calculating p from (2.15) and the new values of po', 
using (2.13) to obtain the volume fraction changes 8fa and then calculating 

(3.21) 

fu,n+l ~ fo.,old + 8fo. 

fu,old 
po.,n+l ~ pa,n+l __ _ 

fa,n+l 

Ecr,n+l ~ (fCt,old E(Y.,n+l _ p8jcr)/ ju,n+l 

where ju,old is the value of fcr,n+l just after (3.20) is computed. 

In practice, 8fcr may be replaced by (J" ·8fCt in the above calculation for any value of 
(J" in the range 0 ~ (J" ~ 1. For the calculations of Section 4, the value (J" == 0.95 is used. 

Up to this point, our method is directly applicable to problems in which a material 
pressure becomes negative (of course, sound speeds are calculated using the absolute value 
of the pressure). An example is (even slightly) overexpanded water. For general multima
terial calculations, such examples occur frequently since heavy materials with stiff EOS's 
will be dynamically interacting with air and similar materials. The results to be presented 
in the next section involve a situation for which it is difficult to make sense of (2.13)-(2.17); 
therefore, (3.21) is not implemented if a negative pressure is present at a cell edge. In other 
examples, it is possible to replace a (negative) material pressure by its absolute value and 
proceed with (3.21). 

4. Computational Results. 

The numerical method developed in Section 3 and Appendices Band C has already 
been extensively used in studies of shock wave refractions and other problems. The reader 
is referred to [5], [10], [12], [19) and [21] for the work on shock wave refraction in gases. 
Recently, a variant of the scheme has also been applied to problems involving water and 
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(heavy, i.e., initial densities of order unity) air (and/or other gases), see [24]. All of these 
papers describe results from codes based on operator split implementations of the algorithm 
of Section 3, just as we do here. 

Our method has been further extended to three space dimensions with adaptive mesh 
refinement (AMR) capability in [23]. This paper also introduces an alternative (bet
ter(???), but still first-order) interface reconstruction algorithm. A second-order accurate 
interface reconstruction algorithm has recently been introduced, see [18], and applied to 
shock wave refractions in gases [11], [13], [14], [22]. 

The EOS for air is taken to be the standard polytropic model P = ("y - 1 ) pe. For water, 
the calculation uses the Tait EOS: 

( 4.) 

~ = A(~)7_B 
Po Po 

c2 = 7A(~)(~)6 
Po Po 

where A == 3001, B = 3000 and (po, po) == (0.99821, 1.01325e + 06) in cgs units. Note that 
Po == 1 atmosphere. 

The computational domain for this calculation is D == {x : 0 ::; x ::; 1000}. The right 
half of D consists of ambient water with (p,p) == (Po,Po) as above. The air is initially given 
by UM == (PM ,PM, UM) == (1.223e - 03, 1 atm, 0) in the region DM == {x : 400 ::; x ::; 500}, 
and UL == (PL,PL,UL) == (,,). Here, UL is precomputed so that the states (UL,UM) are 
connected by a forward-facing rarefaction wave in phase space. 

The computational domain is D == {(x, y) : 0 ::; x ::; 150,0 ::; y ::; 37.5}; where here 
and below distance is measured in meters for convenience. Initially, a contact surface 
separates a region of SF6 which is modelled here as a perfect gas with "y == 1.18 and a 
region of air. The former region is given by DSF6 == {x : 50 ::; x ::; 150,0::; y ::; 18.75} and 
D air is its complement in D. The initial data in DSF6 is given everywhere by (p, u,p) == 
(4.892e - 03,0,1 atm; in D air , a planar forward-facing shock wave with shock wave Mach 
number Ms == 1.7 is situated at x == 22.5. Ahead of the shock, the initial data in D air is 
given everywhere by (p, u,p) == (1.223e - 03,0,1 atm) and the initial state in the region 
behind the shock is calculated from the Rankine--Hugoniot conditions. 

5. Conclusions. 
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Appendix A 
Derivation of the Multiftuid Differential Equations 

In this section, a formal derivation of equations (3.8) is presented, along with a proof 
that these equations form a hyperbolic system in which the constraint of pressure equilib
rium appears as an initial value constraint. The starting point for this derivation is the 
following set of assumptions about the system: 

(1) Conservation of mass for each fluid component: 

(A.l) 

(2) Changes of state for each fluid component are adiabatic: 

(A.2) 
Dea ° D 1 
-D + p -D (-) == 0 , a == 1, ... ,nf t t pO 

where pO == pO (pO ,eCt:). 

(3) Pressure equilibrium among components, i.e., there is a function p(x, t) such that 

(A.3) pCt: (x, t) == p( x, t) , a == 1, . . . ,n f . 

(4) A single momentum equation holds for the fluid mixture: 

(A.4) 
Du 1 
Dt + p \7 p == 0 , 

where the mean density p == Eo fa pCt:. 

(5) The fluid components fill the available volume: 

(A.5) 

These equations constitute a set of 3n f + d + 1 equations for the same number of unknowns 
( {pO, eO, fa; a == 1, ... ,n f }, u, p), where d is the number of space dimensions. 

To derive the equations (3.8), a series of transformations on (A.l) - (A.5) are performed. 
First, notice that (A.2) and (A.3) lead to a set of evolution equations for pCt:: 

(A.6) 

Using conservation of mass for each fluid component and (A.6), the following evolution 
equation for fa is obtained: 

(A.7) 
Dfa fCt: Dp 
-- + fO\7-u+ -- == o. 
Dt prCt: Dt 
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Summing over a and using (A.5) leads to 

(A.8) ~~ + fpV.u = 0, t = (~~:) -1 

Using (A.8), we obtain the following system of equations for our dependent variables: 

(A.9) 

D fa + fa (1 _ t) v. u == 0 
Dt fa 

Dpo. t 
-- + po.-V·u == 0 
Dt fa 

Deo. po. i' 
-- + --V·U == 0 Dt po. fa 
Dp A 

Dt + pfV • U == 0 

Du 1 - + -Vp== O. 
Dt p 

We note that, if we take the system (A.9) as given, we can derive the equations (A.I) -
(A.5), with the constraints (A.3) and and (A.5) as initial value constraints. The evolution 
equation for S == 2:0. fa obtained from summing the equations for fa over a is DB/ Dt == 
(1 - B)V·u (see (3.6», so that B == 1 for all time if Sex, 0) == 1. Similarly, the equations 
for po., eO., pimply (A.6) which, in turn, implies that 

(A.I0) 
Dlogpo. Dlogp 

Dt - Dt ,a == 1, ... ,n f , 

and pa == p for all time if pa(x, 0) = p(x,O), independent of a. In particular, we may 
replace pa by p in the equation for eer. Equivalently, the equation for p is redundant, since 
we can replace it with any of the per computed from per, eO. and the appropriate equation 
of state, or any average of the per,s. Starting with equations (A. 9), it is routine to derive 
the system (3.8). 

To show that the system (A.9) is hyperbolic, we need only consider the case of variation 
in one space dimension. In that case, the dependent variables are Q = ({fer, per, eer, a == 
1, ... ,nf}; u,p)t, where without loss of generality we have only kept the normal velocity 
component. In that case, (A.9) can be written in the form 

(A.Il) 

0 

b 
(A.12) A-uI= 0 

0 0 0 pi' 
0 0 1 0 p 
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'th b - (1 t ~ a t -EL - 1 )t Th h .. 1 . 1 £ A' WI - - ra;T~ ,p r a , para, a - , ... , n,. e c aracterIstlc po ynomla or IS 

given by det(;\I - A) == (,,\ - u)3nf «.-\ - u)2 - pr / p). Therefore, the eigenvalues of A are 
given by .-\ == u ± C, c2 == pr / p and .-\ == u (with multiplicity 3n,). In addition, a complete 
set of right eigenvectors can be constructed. 

A physical interpretation of the eigenstructure is that the system (A.9) supports two 
compressive modes moving relative to the fluid at an effective sound speed for the mixture, 
and 3n f modes carrying variations in the multifluid properties along particle paths. Finally, 
we note that there are both similarities and differences between the situation here and that 
for the equations describing multi phase mixtures in porous media flow [1 J, In both cases, 
the constraint (A.5) is used to derive an evolution equation for a common thermodynamic 
pressure for the mixture, In the porous media case, differentiating the constraint equation 
in time, combined with D'Arcy's law, leads to an elliptic or parabolic equation for the 
pressure; in the present case, differentiating the constraint equation along particle paths 
leads to the hyperbolic system (A.9), with the constraint equations (A.3) and (A.5) on the 
pressure and volume fractions appearing as initial value constraints. 
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Appendix B 
A Single Fluid Eulerian Godunov Scheme for a 

General Equation-of-State 

In this appendix, a second-order Godunov method for compressible flow in one space 
dimension for a fluid with an arbitrary (convex) equation-of-state is developed; the equa
tions to be discretized are: 

(B.l) 
au aAF(U) aH(U) _ 0 
at + av + ax - , 

Here V = Vex) is a generalized volume coordinate, with A = A(x) = ~~ > 0 the cross
sectional area associated with V (x). The conserved quantities and fluxes are given by 

U= (i~) , F(U) = ( PU~:P ), H(U) = (~) 
pE puE+up 0 

where p is the density, u the velocity in the x-direction, v the tranverse velocity, E the 
total energy per unit mass, and p the pressure obtained from the equation of state: p = 

.,2 ..L~J2 
p(p,e), e=E-~. 

Let {Xj+!} be the edges of a finite difference mesh, and ~t a time increment. Conser
vative finite difference approximations of the form 

(B ) n+l - un Llt ( A) ilt ( ) .2 Uj - j + AV: Aj_1.Fj_! - j+!Fj+1. + ~ Hj_! - Hj+1. 
'-l. j 2 2 2 2 '-l.X j 2 2 

are considered, where Llxj = Xj+! -Xj+!, ~Yj = V(Xj+!) - V(Xj_!), Aj+! = A(xj+!) 
and Fj+!, Hj+! are some approximation of the time averages of F and H at Xj+!' The 
strategy for computing Fj +!, Hj+! follows the general predictor-corrector formalism in 
[4], [6], [7]. 

In the formulation of the predictor step, a convenient set of characteristic variables Q 
satisfying the property that that Q = Q(U) is an invertible function of U is required. The 
equations (B.1) then transform into the quasilinear form 

(B.3) 
8Q aQ 
fit + A(Q) ax = G(Q,x). 

The matrix A has real eigenvalues Al < . .. < AN with associated biorthogonal right and 
left eigenvectors {rk}, {lk}, k = 1, ... ,N. 

The prediction of time-centered left and right states at the cell interfaces follows the 
general strategy of [4] and is given as follows: 

Q'+l L = Q~ + LltG~ + ~P+(I - A(Q~) A.t )LlQ. 
J '2 ' 1 2 J 2 J ilx. J , 

J 

Q _ Qn Llt Gn 1 P ( (n ~t ) 
j+!,R - j+l - 2 j+l + 2' - I + A Qj+l) Llx' LlQj+l. 

j 

(B.4) 
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Here, the slopes /lQj are a finite difference approximation to ~~ /lXj to which mono

tonicity constraints have been applied, in the same fashion as for the explicit second-order 
Godunov methods in [4], [6]. The projection operators P± are defined by 

To complete the description of the predictor step, an approximate Riemann problem 
solver which leads to a mapping (Qj+!,L' Qj+!,R) -+ Qj+! is required. For the present 
purpose of computing single fluid fluxes in an explicit multifluid algorithm, this mapping 
is defined by using the Godunov state of the approximate Riemann problem solution. See 
[7] for the construction of a similar approximate Riemann problem solver which is used in 
conjunction with the Engquist-Osher flux formula. 

An important design principle of efficient Godunov-like algorithms is that multiple 
evaluations of the EOS in a time step are to be avoided. To accomplish this, the dimension 
of Q is greater than the dimension of U. These redundant variables are chosen in such a 
way that the entire flux vector can be computed as a simple algebraic function of Q without 
calling the EOS. In [4] the augmented characteristic variables are Q == (p, U,p, V, ,)t, where 
, is defined by , == pj(pe) + 1 wheras the variables Q == (p, U,p, v, pe)t have been chosen 
for the present work. Also, the approximate Riemann problem solver of [4) is replaced by 
a considerably simplified version, in the spirit of the BeT formulation (lJ. The net result 
is an algorithm which is twice as fast as the one in [4] and somewhat easier to program. 
Additionally, this new algorithm is more generally applicable than the older version which 
was really designed around equations-of-state for real gases, for which, is well-defined 
thermodynamically. In particular, neither p nor e are required to be positive for the present 
algorithm to work. 

Explicitly, the characteristic equations (B.3) are: 

(B.5) 

where i == e + pj P is the specific internal enthalpy. It is easy to check that the eigenvalues 
of the characteristic matrix A are given by A == {u - c, U, u, u, u + c}, the matrix of right 
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eigenvectors is 

1 0 1 0 1 
-7C 0 0 0 rc 

(B.6) R= c2 0 0 0 c2 

0 1 0 0 0 

i 0 0 1 i 

where r = p-I, and the corresponding matrix of left eigenvectors is 

0 -.I!- 1 0 0 2c 2C2 
0 0 0 1 0 

(B.7) L= 1 0 1 0 0 - c2 

0 0 i 0 1 - c2 

0 P- I 0 0 2c 2c2 

The Riemann problem solver begins with the calculation of (p*, u*) by linearization: 

* WRPL + WLPR + WLWR(UL - UR) 
P == 

WL+WR 

* WLUL + WRUR + PL - PR 
U = , 

WL+WR 

(B.8) 

where Wl,R == (rpP)L,R, r = pc2 /p, rL,R = r(Uj,i+I)' Setting Ci,R == (rp/ p)L,R, the 
remainder of the *-state calculation proceeds as follows: 

(B.9) 

* p* - PL,R 
PL,R = PL,R + ---=2=-----

cL,R 

(ctR)2 = r L,RP* I Pi,R , 

(pe)L,R = (pe}L,R + (P* - PL,R)( -;. )L,R, 
C 

,.. 
vL,R == VL,R· 

For equations-of-state for which there is a possibility that the pressure P may change sign, 
absolute values of c2 are taken prior to obtaining c from the square root. 

The (approximate) Godunov state QG is defined to be the value of Q along the ray 
x /t == 0 and is computed in two steps. First, we set 

(B.lOa) { 
QL,Q'L ,ifu* > 0 

Q,Q* == * . 
QR, QR, otherWIse, 

and 

(B.lOb) A, '\'" == c - su, c* - SU,.. 
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where s = sgn(u*). Also, an approximate shock speed 

(B.IOc) 

is computed. Second, if A * > A, then 

(B.lla) 

otherwise, if A * < A, then 

(B.llb) 

{

Q,ifO"<O 
Qa= Q*, otherwise; 

{ 

Q, if A < 0 

Qa == Q* , if ,\ * > 0 

o:Q* + (1 - o:)Q , otherwise. 

Here, a = ~(l + ~!~:). These two steps guarantee entropy-satisfying waves; the last 
equation implements linear interpolation in the wave speed to approximate the solution 
inside a rarefaction fan. 

Finally, the fluxes are evaluated from the time-centered states Q j+! as follows: 

(B.12) F,+ 1 == J '2 

Pj+! Uj+! 
2 

Pj+! u j+! 

Pj+! Uj+! Vj+! 

(
12 

(pe)j+! + 2Pj+! Uj+!)Uj+! + Uj+!Pj+! 

To summarize, the single fluid algorithm consists of the following four steps: (1) mono
tonized slopes Dt.Qj are computed for an augmented state vector Q associated with a con
venient transformed system (B.3); (2) the projection operators are applied to construct 
time-centered left and right states (BA); (3) the approximate Riemann problem solver de
scribed in this section resolves nonlinear wave interactions at interfaces and the Godunov 
state is used as the interface state Qj+!; and (4) fluxes are evaluated at these interface 
states, (B.12), and the general explicit conservative update formula (B.2) is calculated. 

CGF 4/29/1997 DRAFT 21 



Appendix C 
Subgrid Multifluid Representation Using SLIC 

The SLIC (Simple Line Interface Calculation) algorithm [11] is a procedure for repre
senting the subgrid structure of multifluid zones based on local volume-of-fluid information. 
This information is used to advect fluid volume fractions, see (3.10), and it is essential that 
the construction leads to appropriate global interface movements. Indeed, a noteworthy 
aspect of this work is that the multifluid algorithm coupled with the SLIC construction is 
capable of achieving this goal using only a local interface reconstruction. SLIC and related 
volume-of-fluid constructions have been widely used in compressible flow codes as well as 
in other areas of fluid mechanics, e.g., flame front propagation [9], Hele-Shaw interfaces 
[25], astrophysical jets [26] and the references discussed in Section 4. 

Since its introduction, SLIC has been adapted and modified by several groups. We 
present here our ID split version which has been used for the calculations herein. This 
version is very close to the original [11]; in particular, the subgrid construction is restricted 
to horizontal and vertical lines. The reader is referred to [18J where SLIC and newer first
order as well as second-order reconstruction algorithms are compared (for accuracy) in the 
context of linear advection. 

The construction of multifluid geometric structure in the jth zone is a function of the 
data {~VJ+s : s = ±1,O; a = 1, ... ,nf}. Figure Cl illustrates the possible results of the 
SLIC calculation as implemented here for the case of two fluids. Here, it is assumed that 
the jth zone is nontrivially multifluid (Le., contains nonzero amounts of both 'black' and 
'white' fluid). Of course, the extent of the black shading in each of these configurations 
will correspond exactly to the volume fractions in the jth zone. On the other hand, there 
is no cutoff in determining the type (that is, all white, all black or black and white) of the 
zones to the left and right, so that a zone will be treated as 'black and white' unless one 
of the volume fractions is close (i.e., a few orders of magnitude greater than) to machine 
roundoff. A simple smooth interface, overlayed on a square grid, is illustrated in Figure 
C2 along with its' SL1C reconstruction as it would be calculated in a fractional step of 
the overall algorithm in the x-direction (assuming that the initial volume fractions are in 
accord with the figure). 

The case in which, say, 'black' fluid is between two 'all white' zones is a little trickier. 
In a two-dimensional context, this situation can arise if a long, thin 'black' region is 
situated transverse to the current sweep direction. The naive approach for this case is to 
center the 'black' fluid in the zone. However, consider a problem for which the local fluid 
(hence, interface) velocity is significantly less than the (global) maximum wave speed used 
to compute the CFL number and the time step. It is then possible that no 'black' fluid 
will ever cross the zone interface in the flow direction. Thus, a more robust approach is 
required. Our implementation of 8LIC uses a 'random choice' technique; the 'left' and 
'right' interfaces of the 'black' fluid are placed randomly and with equal probability in the 
zone subject only to the obvious constraint that the entire 'black' region must be contained 
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in the zone. 

It is not obvious that a multidimensional interface will remain recognizable after several 
time steps. Indeed, if the interface is physically unstable then this is not even desirable. 
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